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1. Introduction 

Several workers have investigated the linear and nonlinear 
properties of plasma waves mainly confined to classical 
nonrelativistic plasma. In some plasma particle velocities become 
high approaching to the speed of light, so for such plasmas, it 
becomes necessary to consider relativistic effects. In fact, 
relativistic effect significantally modify the linear and nonlinear 
properties of plasma waves. Relativistic plasma may be formed 
in many practical situations e.g. in space-plasma phenomena and 
in various situations mainly laser-plasma interaction experiments 
[1-8]. In the literature, only a few studies related to relativistic 
effects on electron plasma waves may be found. 

All the above studies on relativistic effects on plasma waves 
have been presented for classical plasma. But in plasmas, where 
the density is too high and temperature is very low, the thermal 
de Broglic wavelength may become comparable to the inter 
particle distances. In these situations, quantum effects come in 
the picture due to the overlapping of wave functions of the 
nearby particles. These quantum effects may modify the linear 
and nonlinear features from that found in the corresponding 
classical plasma. As a newly emerging field in plasma physics, 
quantum plasmas have received much attention. There has been 
an important interest in the study of linear and nonlinear features 
of various wave modes in quantum plasmas [9-11]. Many workers 
have presented quantum effects on linear and nonlinear features 
of ion-acoustic and dust-acoustic waves [12-16]. 

In this paper, we have presented the linear and nonlinear 
properties of electron plasma waves including weakly relativistic 
effect and ion motion, using the one-dimensional quantum 
hydrodynamic (QHD) model for two compound electron-ion 

dense quantum plasma. It is shown that the relativistic effects 
may change the linear and nonlinear properties of electron 
plasma waves in quantum plasma. 

2. Some Basic Equations 

Let us consider weakly relativistic plasma made of electrons 
and ions moving along the x-axis and the pressure law reads [17-
18]  
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where j e=  for electrons, j i=  for ions, jm  be the mass, 

2
j jF B F jV K T m=  be the Fermi speed, 

jF
T  as the Fermi 

temperature and BK  is the Boltzmann constant and jn  as the 

number density with the equilibrium value jon . Bohm potential 

plays an important role in describing quantum hydrodynamics 

and Bohm defined wave function ( ),x tψ  as 

( ) ( ) ( ), , exp , ,x t R x t iS x tψ = ⎡ ⎤⎣ ⎦   (2) 

where R as the real amplitude and S is the real phase. Then, using 
Schrodinger equation he obtained equation for S which apart 
from the usual classical potential contains an additional potential 
term, known as Bohm potential [19]. 
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Now one may obtain the set of quantum hydrodynamic (QHD) 
equations describing the dynamics of the electron plasma waves 
in the model plasma are, 
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where ,j ju q  and jp  are the fluid velocity, charge and the 

pressure of the jth species, ( )
1

22,  ,  1 e
e i eq e q e u e cγ= − = = −  

as the relativistic factor for electrons, 0iγ =  for ions, C as the 

velocity of light in free space, h as the Planck's constant divided 
by 2π  and ϕ  as the electrostatic wave potential. Due to lighter 

mass of electrons, attain relativistic speed more easily than the 
heavier ions. For this one may consider the ion motion as non-
relativistic. It is an important to note that we have taken 
relativistic effect only in the equation (4) for simplicity and ultra-
cold plasma with weakly relativistic effect. 

Let us use the normalisation as: ,
ee Fx x p Vω→  

,et t pω→  2  ,
eB Fe K Tϕ ϕ→  0j jn n n→  and ,

ej j Fu u V→  

where 2
04pe en e mω π= be the electron plasma oscillation 

frequency, 
eF

V  be the Fermi speed of electrons. 

In view of normalisation, one obtains following set of 
equations for ions and electrons as,  
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where 
2 ,

ee B FH p K Tω=  

be a nondimensional quantum parameter proportional to the 
quantum diffraction, 

e im mµ =  and .
i eF FT Tσ =  The quantum 

diffraction parameter H is proportional to .
ee B Fp K Tω   

3. Nonlinear Schrodinger Equation (NLSE) 

Let us assume that ions being heavier mass, may not respond 
to the high frequency components of the field quantities. They 
contribute only to the slowly-varying part of the field quantities 
generated through nonlinear interactions of high frequency 

waves. In view of the above considerations one may make the 
following Fourier expansion of the field quantities.  
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( ) 2   and   ,x cgt tξ τ=∈ − =∈  (13) 

where 
∈

 as a small parameter and Cg as the normalised group 
velocity. By substituting eqs. (11) and (12) in eqs. (6)-(10) and 
then equating both sides the coefficients of ( )exp 2i ψ  and terms 

independent of ψ , one obtains three sets of equations which one 

says I, II and III. In order to solve these three sets of equations 
one makes the following  perturbation expansion for the field 

quantities 0, , , , , ,eo eo es es s ion u n u nϕ ϕ  and iou  which one 

denotes as A: 
( ) ( ) ( )1 2 32 ..........A A A A= +∈ +∈ +   (14) 

By solving the lowest order equations obtained from the set of 
equations I after substituting eq. (14), one obtains, 

( ) ( ) ( ) ( ) ( )1 1 1 12
1 1 1 0 1, ,e en k u k kuϕ ω ϕ= − = − −  (15) 

and the normalised dispersion equation 
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The eq. (16) in dimensional form assumes the form 
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Equation (18) gives the relativistic quantum plasma wave 
dispersion relation. In the absence of relativistic effect i.e. 

2 3 1,γ γ= =  the eq. (18) reduces to quantum electron plasma 

wave in a non-drifting, 
0 0,u =  plasma. For 0 0u =  and 0,H =  

the eq. (18) reduces to the well known dispersion relation of 
electron plasma waves such that 

eF
V  is replaced by the electron 

thermal velocity .eV  For a relativistic classical cold plasma the eq. 

(18) reduces to 
2 2

0 01 3
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The group velocity 
gC d dkω=  is evaluated from eq. (17) as 
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From the set of eqs. II, the second harmonic quantities in the 
lowest order may be obtained from the solutions of lowest order 
equations after substituting perturbation equation (14), one 
obtains 
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in which 2

1 0 .u cγ =  

From the set of equations III after substituting the perturbation 
eq. (14), the zeroth harmonic quantities are obtained from the 
solution of the lowest order equation 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

2

2

1 1
0 0 1

1 1 1
1 1

1 13
1 0 0 1

1 1
1 0

,

,

2 ,

,

eo io

eo g

io g i

b

n n b

u b c u ku k

u b c u

ϕ ϕ

ϕ

ω ϕ

ϕ

⎫=
⎪
⎪= = ⎪
⎬

⎡ ⎤= − − − ⎪⎣ ⎦
⎪
⎪= − ⎭

  (23) 

where 
( ) ( ) ( ){ }( )

( )

( )

22
3 0 0 3 1 0 0

2 2 2 3
22 1

0

0 2

0 3

2 3

3                           1
4 4

,
1

g g

g

k c u k ku u c ku

H k H kk ku
b

c u

γ ω γ γ ω

γ γ
ω

γ

⎡ − − + + − −⎣

⎤⎛ ⎞
+ + + − ⎥⎜ ⎟
⎝ ⎠ ⎦=
⎡ ⎤− −⎢ ⎥⎣ ⎦

 (24) 

( )
0

1 2

0 3

.
g

b
b

c u

µ

γ σ
=
⎡ ⎤− −⎢ ⎥⎣ ⎦

    (25) 

The first harmonic quantities in the second order are obtained 
from the solutions (15) by replacing iω−  by 
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Again by collecting coefficients of 3∈  from both sides of the sets 
of equation I after substituting eq. (14), we obtain a set of 
equations for the first harmonic quantities in the third order. In 
view of the above solutions and after suitable elimination, we get 
the nonlinear Schrodinger equation (NLSE) as 
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and the nonlinear coefficient 
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It is an important to note that both the coefficients P and Q 
depend on the relativistic effects through the terms 2 3,γ γ  and 

0 .u  

4. Modulational Instability 

The nonlinear Schrodinger Equation (NSE) describes the 
amplitude modulation of electron plasma waves with quantum 
corrections and relativistic effects. Now it is obvious that when   
the wave is modulationally stable, whereas when   the wave 
becomes modulationally unstable. 

5. Concluding Remarks 

We have presented one-dimensional quantum hydrodynamic 
(QHD) model to study relativistic effects on the linear and 
nonlinear properties of quantum electron plasma waves in a two 
component electron-ion dense quantum plasma with the effects 
of ion motion. We have taken weakly relativistic situation. 
Electrons, due to their lighter mass, gain relativistic speed very 
easily than ions having heavier mass. Hence, we have considered 
ion motion as non-relativistic and presented relativistic effects on 
electron motion through the parameter .eγ  For P = 0, we get 

2i Qα
α α

τ
∗∂

=
∂

 and for Q = 0, 
2

2 0,i Pα α
τ ξ
∂ ∂

+ =
∂ ∂

 where P and Q 

denote group dispersion coefficient and nonlinear coefficient 
respectively. 
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